Space Solar Power Concept Technology Maturation Technical Interchange Meeting Glenn Research Center, Cleveland OH September 10-12, 2002

Output from Working Group Session: SIWG

SIWG Session Members

- Chair: Harvey Feingold
- Co-Chair: Jay Penn
- Monica Doyle
- David Elkin
- Paul Gill
- Joe Howell
- Glenn Law
- David Maynard
- Paul Schmitz

- The past few years have seen technology development and new technologies emerge which could have an impact on reaching the goals of SSP.
- List the technologies which may have the possibility to achieve the goals of SSP. These technologies must have revolutionary potential and address one or more of the following characteristics:
 - Significant mass reduction
 - Dramatically improve efficiency
 - Considerable cost reduction
 - Reliability and longevity improvements
 - Ability to withstand operating environments

Table 1

List of System Activities & Revolutionary Technologies:

- 1. Concepts that utilize solid state and solar pumped laser technologies
 - Laser systems should utilize ground receivers which collect both direct solar and laser beamed energy
 - Two types of solar pumped laser approaches: wide and narrow spectrum
 - Evaluate and model
- 2. Hot Dot Array Microwave Concept (final microwave concept, honest!)
- 3. Sandwich Concept model if a feasible thermal control design can be derived
- Advanced thermal control technologies (e.g. micro-channels) and system approaches that will enable concepts such as the Sandwich Concept
- 5. Potential future application: use lasers as direct heating and/or dissociation to generate fuels on the ground

Table 2

Detailed description and assessment of technologies from Table 1. List the impact to the SSP goals and the other related technologies:

- 1. Potential for economically-viable SSP system
- 2. Potential for economically-viable SSP system
- 3. Potential for economically-viable SSP system
- 4. Work closely with micro-channel thermal control awardees to define system requirements, particularly for Sandwich Concept. Opportunity for broad range of space applications.
- 5. Provides energy source other than electricity for terrestrial use

Table 3

Consensus on the future direction of research and development to solve the challenges of SSP:

Near Term:

- Develop models of concepts from Table 1 to support decision making for future technology investments and concept developments
- Flow-down requirements to technology experts
- Identify promising ground and flight demonstration systems

Far Term:

SIWG Issues

- Need experienced cost analysis team and industryrecognized cost models
 - Desire expertise in space systems and mass production
 - PRICE, SEER?
- Future ISM spectrum availability for Microwave concepts
- Desperate need for Laser system information
 - Aerospace, Boeing, JPL, LaRC, UAH
- Question about Microwave concept from Professor Pavlidis from University of Michigan
 - Grating lobes are a concern for distributed transmitting devices

Laser Diode Concept Issues

- Electrical-to-optical conversion efficiency, lifetime, and operating temperature of laser diodes
- Coupling efficiency of diode energy into lasing fibers
- Fiber-to-bundle coupling efficiencies
- Bundle-to-telescope coupling efficiencies
- Integrated vs. separate solar array and laser diode heat rejection, including life effects
- Optimization of ground receiver for economics

Solar Pumped Laser Concept Issues

- What does a Solar Pumped Laser spacecraft look like?
 - Need spacecraft definition
- Conversion efficiency of white light into lasing frequencies and coupling efficiencies into laser fibers
- Ability to phase lock fibers with spectral frequency
- Optimization of ground receiver for economics
- LaRC has worked Solar Pumped Lasers in the past
- JPL Solar Pumped Laser contact:
 - Leo DeDominico

SIWG Action Items

- Status of Boeing Laser concept model
 - Paul Gill
- Get name of contact at LaRC for Solar Pumped Laser
 - David Elkin and/or Paul Gill
- Laser diode efficiency, temperature, lifetime discussion
 - Paul Schmitz, Monica Doyle, Aerospace, Boeing, UAH
- TITAN modeler's meeting to develop a common architecture for systems modeling
 - Harvey Feingold will set up